Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Elife ; 122023 02 10.
Article in English | MEDLINE | ID: covidwho-2241746

ABSTRACT

Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.


Subject(s)
COVID-19 , Neanderthals , Virus Diseases , Humans , Animals , COVID-19/genetics , Neanderthals/genetics , SARS-CoV-2/genetics , Genetics, Population
2.
Cell Host Microbe ; 31(2): 161-163, 2023 02 08.
Article in English | MEDLINE | ID: covidwho-2227847

ABSTRACT

Cellular entry receptors for bat MERS-CoV-like viruses NeoCoV and PDF-2180 were unknown, leaving their zoonotic potential ambiguous. A recent study by Xiong et al. published in Nature identified bat ACE2 as the cellular entry receptor for both viruses, highlighting the ability of coronaviruses to utilize a range of entry receptors.


Subject(s)
Chiroptera , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Angiotensin-Converting Enzyme 2 , Cell Line , Spike Glycoprotein, Coronavirus
3.
Redox Biol ; 58: 102508, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069622

ABSTRACT

RATIONALE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 pneumonia. We hypothesize that SARS-CoV-2 causes alveolar injury and hypoxemia by damaging mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC), triggering apoptosis and bioenergetic impairment, and impairing hypoxic pulmonary vasoconstriction (HPV), respectively. OBJECTIVES: We examined the effects of: A) human betacoronaviruses, SARS-CoV-2 and HCoV-OC43, and individual SARS-CoV-2 proteins on apoptosis, mitochondrial fission, and bioenergetics in AEC; and B) SARS-CoV-2 proteins and mouse hepatitis virus (MHV-1) infection on HPV. METHODS: We used transcriptomic data to identify temporal changes in mitochondrial-relevant gene ontology (GO) pathways post-SARS-CoV-2 infection. We also transduced AECs with SARS-CoV-2 proteins (M, Nsp7 or Nsp9) and determined effects on mitochondrial permeability transition pore (mPTP) activity, relative membrane potential, apoptosis, mitochondrial fission, and oxygen consumption rates (OCR). In human PASMC, we assessed the effects of SARS-CoV-2 proteins on hypoxic increases in cytosolic calcium, an HPV proxy. In MHV-1 pneumonia, we assessed HPV via cardiac catheterization and apoptosis using the TUNEL assay. RESULTS: SARS-CoV-2 regulated mitochondrial apoptosis, mitochondrial membrane permeabilization and electron transport chain (ETC) GO pathways within 2 hours of infection. SARS-CoV-2 downregulated ETC Complex I and ATP synthase genes, and upregulated apoptosis-inducing genes. SARS-CoV-2 and HCoV-OC43 upregulated and activated dynamin-related protein 1 (Drp1) and increased mitochondrial fission. SARS-CoV-2 and transduced SARS-CoV-2 proteins increased apoptosis inducing factor (AIF) expression and activated caspase 7, resulting in apoptosis. Coronaviruses also reduced OCR, decreased ETC Complex I activity and lowered ATP levels in AEC. M protein transduction also increased mPTP opening. In human PASMC, M and Nsp9 proteins inhibited HPV. In MHV-1 pneumonia, infected AEC displayed apoptosis and HPV was suppressed. BAY K8644, a calcium channel agonist, increased HPV and improved SpO2. CONCLUSIONS: Coronaviruses, including SARS-CoV-2, cause AEC apoptosis, mitochondrial fission, and bioenergetic impairment. SARS-CoV-2 also suppresses HPV by targeting mitochondria. This mitochondriopathy is replicated by transduction with SARS-CoV-2 proteins, indicating a mechanistic role for viral-host mitochondrial protein interactions. Mitochondriopathy is a conserved feature of coronaviral pneumonia that may exacerbate hypoxemia and constitutes a therapeutic target.


Subject(s)
COVID-19 , Papillomavirus Infections , Animals , Mice , Humans , SARS-CoV-2 , Hypoxia/complications , Mitochondrial Permeability Transition Pore , Adenosine Triphosphate
4.
iScience ; 24(5): 102477, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1201540

ABSTRACT

Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are scarce. Here we demonstrate that SARS-CoV-2 infection induces a type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Furthermore, we show that physiological levels of IFNα detected in patients with moderate COVID-19 is sufficient to suppress SARS-CoV-2 replication in human airway cells.

5.
Emerg Infect Dis ; 26(9): 2054-2063, 2020 09.
Article in English | MEDLINE | ID: covidwho-607956

ABSTRACT

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks. We also tested a wide range of human immune cells for productive infection with SARS-CoV-2. We confirm that human primary peripheral blood mononuclear cells are not permissive for SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor single-nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine viral genotype and phenotype by using in vitro and in vivo infection models.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Leukocytes, Mononuclear/virology , Pneumonia, Viral/virology , Virus Replication/genetics , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genotype , Humans , Kinetics , Pandemics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL